If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+28x-50=0
a = 6; b = 28; c = -50;
Δ = b2-4ac
Δ = 282-4·6·(-50)
Δ = 1984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1984}=\sqrt{64*31}=\sqrt{64}*\sqrt{31}=8\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-8\sqrt{31}}{2*6}=\frac{-28-8\sqrt{31}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+8\sqrt{31}}{2*6}=\frac{-28+8\sqrt{31}}{12} $
| z³-z²+z-1=0 | | 2x+1/3x-2=5/4 | | (5x-8)/(6x+10)=9 | | 23x2=6x-86 | | 23x4=6x-86 | | 1.1^x+11*1.1^(x-1)-11=20 | | (h-6)(h+7)=0 | | 1.1^x+11*1.1^(x-1)=20 | | 5(6x-4)=70 | | 1/3(5x+2)-2(1/2x+1/3)=2/3x | | (2r+6)/8=(2r-12)/2 | | 7/5r-4=2/5r | | 5x+2(-5+2x)=62 | | 3*(6,3333333333+-0,6666666667y)+2y=19 | | 50=8+x➗2 | | 5x+40=2x-7=8x-8 | | 10^x=4.95 | | 3x-24=7x+1 | | 1/5(6x-2)+3(1/2x-1/6)=2,52x | | 5x+40=8x+8 | | 9^3x-2=27 | | 3^2x-3=60 | | n+2=5-3 | | 3x^2+13x=100 | | 3x+6=7x-42 | | 3^3x-2=60 | | X^3+5x+18=0 | | 6(x+4)=-3(-2x-5) | | 1/x+4-1/5/1/x-4/1/3=1 | | 2x+13=-35-6 | | 3x-5/4-x-7/6=x-5/3+1 | | 3/4p=4 |